Midnight Journal Club 3rd Oct 2022

大阪府済生会千里病院 千里救命救急センター 伊藤 裕介 本日のテーマ

- AMI
- といっても・・・ Acute myocardial infarctionではありません。
- Acute Mesenteric ischemia

Guidelines

Bala et al. World Journal of Emergency Surgery (2017) 12:38 DOI 10.1186/s13017-017-0150-5

World Journal of Emergency Surgery

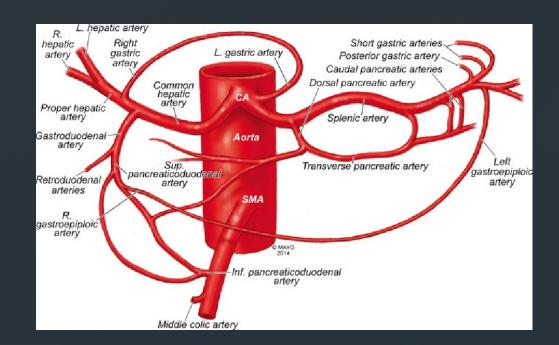
REVIEW Open Access

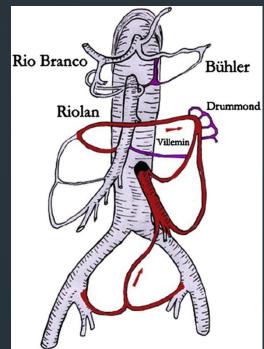
Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery

Miklosh Bala^{1*}, Jeffry Kashuk², Ernest E. Moore³, Yoram Kluger⁴, Walter Biffl⁵, Carlos Augusto Gomes⁶, Offir Ben-Ishay⁴, Chen Rubinstein⁷, Zsolt J. Balogh⁸, Ian Civil⁹, Federico Coccolini¹⁰, Ari Leppaniemi¹¹, Andrew Peitzman¹², Luca Ansaloni¹⁰, Michael Sugrue¹³, Massimo Sartelli¹⁴, Salomone Di Saverio¹⁵, Gustavo P. Fraga¹⁶ and Fausto Catena¹⁷

AMI

- Mesenteric arterial embolism (50%)
- Mesenteric arterial thrombosis (15-25%)
- Non-occlusive (NOMI) (20%)
- Mesenteric venous thrombosis (5-15%)


The overall incidence is low ($0.09 \sim 0.2\%$) of all acute admissions to ED


Cruu Opin Crit Care. 2015;21:171-8 N Engl J Med. 2016;374:959-68 Mortality

- Mortality rates are about 50–80%.
- There are no level 1 evidence.
- The WSES World Congress, May 2017 in Campinas, Brazil

Anatomy

- SMA is primary blood supply for the small bowel
- Collateral flow from celiac arterial system, via the superior and inferior pancreaticoduodenal arteries and inferior mesenteric artery

Physiology

- 15-35% cardiac output, dependeng on the feeding state
- Blood supply must be reduced by more than 50% before the small intestine becomes ischemic
- Mesenteric ischemia does not occur until the patient's mean arterial pressure is < 45 mmHg
- The small intestine is able to compensate for a 75% reduction in mesenteric blood flow for up to 12h

Surg Clin North Am. 1997; 77: 289-306 Langenbeck's Arch Surg. 1999; 384;233-8 J Vasc Surg 2014;60:111-9

Acute mesenteric arterial embolism

- Roughly 50% of all case of AMI
- Relatively large diameter and low takeoff angle from aorta
- The majority of emboli lodge 3 to 10 cm distal
- More than 20% are associated with the splenic, of kidney emboli.

Acute mesenteric arterial thrombosis

- Approximately 25% of cases
- Associated with pre-existing chronic atherosclerotic disease leading to stenosis
- A history of chronic mesenteric ischemia
- Most often accompanies celiac occlusion
- Due to vasculitis, mesenteric dissection, or a mycotic aneurysm

Non-occlusive mesenteric ischemia Mesenteric venous thrombosis

- NOMI occurs in 20%, typically suffer from severe coexisting illness, hypovolemia and the use of vasoconstrictive agents.
- Mesenteric venous thrombosis accounts for less than 10%. Portal hypertension, pancreatitis, inflammatory bowel disease, sepsis, and trauma.

Recommendation 1A

- Computed tomography
 angiography (CTA) should be
 performed as soon as possible.
- Prompt laparotomy should be done for patients with overt peritonitis

Recommendation 1B

- Sever abdominal pain out of proportion to physical examination findings should be assumed to be AMI.
- Clinical scenario differentiates AMI.
- There are no laboratory studies that are sufficiently accurate to identify the presence or absence of ischemic or necrotic bowel, although elevated lactate, and D-dimer may assist.

Recommendation 1B

- NOMI should be suspected in critically ill patient with abdominal pain or distension requiring vasopressor support.
- When the diagnosis of AMI is made, fluid resuscitation should commence. Nasogastric decompression, correct electrolyte abnormalities.
- Broad-spectrum antibiotics should be administered.
 Anticoagulated with intravenous unfractionated heparin.
- Damage control surgery

Recommendation 1B

- Mesenteric venous thromobosis can often be successfully treated with a continous infusion of unfractionated heparin.
- When NOMI is suspected, correct the underlying cause.

Treatment for AMI

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Surg 2021 August 27; 13(8): 806-813

DOI: 10.4240/wjgs.v13.i8.806

ISSN 1948-9366 (online)

MINIREVIEWS

Multidisciplinary management of acute mesenteric ischemia: Surgery and endovascular intervention

Takashi Sakamoto, Tadao Kubota, Hiraku Funakoshi, Alan Kawarai Lefor

AMI

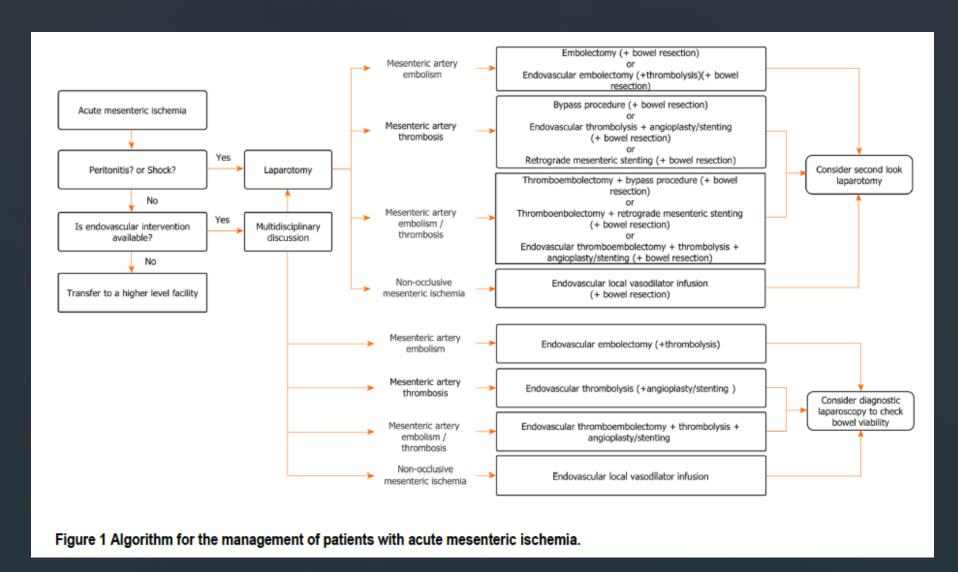
- Mesenteric arterial embolism (50%→25%)
- Mesenteric arterial thrombosis (15-25%→40%)
- Non-occlusive (NOMI) (5~15%→25%)
- Mesenteric venous thrombosis (5-15%)

Comparison of endovascular intervention and surgery observational study

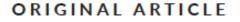
- 42 endo vs 121 open: 28% vs 42% (30d mortality), 39% vs 58% (1 year mortality)
 J Vasc Surg 2010;52:959-966
- 5237 patients (35.5% endo vs 64.5% open): mortality 15.6% vs 38.6%
- 4665 patients (24% endo vs 76% open): mortality 24.9% vs 39.3%
- 439 patients (6.2% endo vs 5.2% hybrid, 88.6% open): endovascular intervention was associated with decreased mortality (OR 0.4,95%CI 0.2-0.9)

Am Surg 2015;81:1170-1176

Comparison of endovascular intervention and surgery a meta-analysis


- Endovascular intervention had a lower prevalence of bowel resection (OR 0.37,95%CI 0.23-0.59)
 Eur J Vasc Endovasc Surg 2017;53:460-510
- Endovascular intervention was associated with a lower prevalence of bowel resection
 (OR 0.45,95%CI 0.34-0.59)
 30-d mortality (OR 0.45,95%CI 0.34-0.59)

Hybrid


Retrograde open mesenteric stenting (ROMS)
 shorter ROMS vs open: 189 vs 302 min
 patency ROMS 76~88%

Vasc Surg 2020; 72:1260-1268 Surg Pract Sci 2020 J Vasc Surg 2018; 68:470-480

Treatment strategy

Prediction of need for bowel resection

Prediction of need for bowel resection in acute superior mesenteric artery occlusion: A retrospective study of 48 Japanese patients

```
Susumu Watada<sup>1</sup> | Hideaki Obara<sup>2</sup> | Jun Okui<sup>2,3</sup> | Kyosuke Hosokawa<sup>1</sup> | Kentaro Matsubara<sup>2</sup> | Hirohisa Harada<sup>4</sup> | Naoki Fujimura<sup>4</sup> | Taku Fujii<sup>5</sup> | Tatsuya Shimogawara<sup>6</sup> | Yuko Kitagawa<sup>2</sup>
```

茂木分類

- A型(高位完全虚血型); MCA,RCA,J3レベルでの閉塞。側副 血行路が期待できず、腸管壊死のゴールデンタイムは5時間以 内。血栓溶解療法はこの時間を超えては危険
- B型(中間位不完全虚血型):ICA,IA分岐レベルでの閉塞。ゴールデンタイム10~12時間を超えても血栓溶解療法が可能
- C型(末梢血流不全型);回腸末端の辺縁動脈の閉塞。症状があれば、切除術の適応

The retrospective study

- Jun. 2009 Aug 2018.
- Five general hospitals in Japan
- 48 patients diagnosed with acute SMA occlusion
- Proximal occlusion (the main trunk-MCA)
 Distal occlusion (MCA-)
- BRN group vs non-BRN group

TABLE 1 Demographics, clinical presentation, etiology, and preoperative laboratory results of 48 patients with superior mesenteric artery occlusion

	Overall	BRN group	Non-BRN group	P-value
N	48	28	20	
Age (y)	82.50 (10.22)	82.75 (10.09)	82.15 (10.65)	.844
Male sex	18 (37.5%)	9 (32.1%)	9 (45.0%)	.385
Atrial fibrillation	40 (83.3%)	21 (75.0%)	19 (95.0%)	.116
Peripheral arterial disease	10 (20.8%)	5 (17.9%)	5 (25.0%)	.721
Hypertension	39 (81.2%)	23 (82.1%)	16 (80.0%)	1
Diabetes mellitus	12 (25.0%)	7 (25.0%)	5 (25.0%)	1
Hyperlipidemia	13 (27.1%)	6 (21.4%)	7 (35.0%)	.339
Coronary artery disease	12 (25.0%)	9 (32.1%)	3 (15.0%)	.311
Cerebrovascular disease	15 (31.2%)	8 (28.6%)	7 (35.0%)	.755
History of smoking	26 (54.2%)	16 (57.1%)	10 (50.0%)	.77
Antiplatelet therapy	16 (33.3%)	10 (35.7%)	6 (30.0%)	.763
Anticoagulant therapy	14 (29.2%)	7 (25.0%)	7 (35.0%)	.528
Statin therapy	12 (25.0%)	5 (17.9%)	7 (35.0%)	.198
Abdominal pain	41 (85.4%)	23 (82.1%)	18 (90.0%)	.683
Vomiting	8 (16.7%)	7 (25.0%)	1 (5.0%)	.116
Diarrhea	7 (14.6%)	2 (7.1%)	5 (25.0%)	.111
Cause of occlusion = Embolism/Thrombus	37/7 (84.1%/15.9%)	19/6 (76.0%/24.0%)	18/1 (94.7%/5.3%)	.119
Site of occlusion = Proximal occlusion*	33 (68.8%)	22 (78.6%)	11 (55.0%)	.117
WBC (/µL)	13 629 (5150)	14 139 (4841)	12914 (5601)	.422
CPK (g/dL)	235.6 (465.4)	280.6 (561.9)	172.6 (282.9)	.434
CRP (mg/dL)	6.54 (10.06)	9.50 (11.69)	2.55 (5.35)	.017
Lactate (mg/dL)	4.35 (2.53)	4.81 (2.78)	3.48 (1.73)	.126
pH	7.40 (0.09)	7.38 (0.06)	7.42 (0.12)	.119
D-dimer (µg/mL)	10.41 (10.65)	12.79 (11.07)	7.52 (9.61)	.111
Time from onset to diagnosis, hours (median [IQR])	13.00 [4.75-24.00]	16.50 [5.75-24.00]	12.50 [3.75-20.25]	.231
Time from diagnosis to intervention, hours (median [IQR]) ^b	3.50 [2.75, 4.00]	3.50 [3.00, 4.50]	3.50 [2.50, 4.00]	.417
Operation time, min (median [IQR])	130.50 [92.25-156.75]	139.50 [108.50-184.25]	113.00 [90.50-131.00]	.045
Estimated blood loss (g) (median [IQR])	100.00 [50.00-287.50]	149.00 [63.50-325.75]	73.00 [50.00-100.00]	.142
CHAD ₂ score	3.04 (1.54)	3.04 (1.40)	3.05 (1.76)	.975
CHAD ₂ DS ₂ -VASc score	5.15 (1.94)	5.25 (1.71)	5.00 (2.25)	.664
In-hospital death	15 (31.2%)	11 (39.3%)	4 (20.0%) ^c	.212

demographics

Multivariable logistic regression model

TABLE 3 Multivariable logistic regression model for predicting whether bowel resection is required in patients with acute superior mesenteric artery occlusion

Variables		OR	95% CI	Beta coefficient	SE of Beta coefficient	P-value
Time from onset to diagnosis (hour)	Continuous	1.04	0.99-1.09	0.037	0.024	.115
Proximal occlusion	No	Ref	-	-	-	-
	Yes	4.46	1.08-18.34	1.494	0.722	.039
Intercept	_	_	_	-1.309	0.784	.095

Note: Logistic regression formula: Score (linear predictor) = $0.037 \times \text{Time}$ from symptom onset to diagnosis (hour) + $1.494 \times \text{Proximal}$ occlusion (Yes = 1, No = 0) - 1.309.

The threshold of the linear predictor was 0.315, with a sensitivity of 78.6% and specificity of 55.0%.

Example 1 Using this model, it can be determined with 78.6% probability that bowel resection is not necessary for cases of proximal occlusion within 3.5 h.

Example 2 It can be determined with 78.6% probability that bowel resection is not necessary for cases of distal occlusion within 43.6 h.

Abbreviations: CI, confidence interval; OR, odds ratio; SE, standard error.

Predictive model for determing the needs for bowel resection in patients with SMA occlution

•

https://okui.shiny apps.io/sma_bowel resec tion_predi ctor/

Summary

- AM Iを疑ったら、CTA
- 明らかな腹膜炎は試験開腹または審査腹腔鏡
- 身体所見にそぐわない強い腹痛は要注意
- 病歴が大事
- あてになる採血はlactateとD-dimer
- AMIと診断したら、蘇生輸液、NG、抗生剤、ヘパリン
- 手術はDCS、方法はhybridがこれからの主流かな